أخر الاخبار

Examples Bresenham's Line Algorithm

 Examples // Bresenham's Line Algorithm

ex1://Consider the line from (5, 5) to (13, 9), use the Bresenham's algorithm.

sol//

𝚫x = 13-5∣=8

  𝚫y = l9-5=4

   x=5       ,  y=5

=  2*4-8 =0

i

plot

x

y

e

 

 

5

5

0

1

(5,5)

6

6

-16

 

 

 

 

-8

2

(6,6)

7

6

0

3

(7,6)

8

7

-16

 

 

 

 

-8

4

(8,7)

9

7

0

5

(9,7)

10

8

-16

 

 

 

 

-8

6

(10,8)

11

8

0

7

(11,8)

12

9

-16

 

 

 

 

-8

8

(12,9)

13

9

0

9

(13,9)

14

10

-16

 

 

 

 

-8






Ex2//Using Bresenham Algorithm calculate the points between the starting coordinates (9, 18) and ending coordinates (14, 22).

Solution: 
o Given: 
Starting coordinates: (X0, Y0) = (9, 18) 
Ending coordinates: (Xn, Yn) = (14, 22)  

STEP – 01: 
o Calculate ΔX, ΔY from the given input. 
ΔX = Xn – X0 = 14 – 9 = 5
 ΔY =Yn – Y0 = 22 – 18 = 4

STEP – 02: 
o Calculate the decision para

meter Pk. 
Pk= 2 ΔY- ΔX = 2×4-5 = 3

STEP – 03:
 o As Pk >= 0, so case-02 is satisfied. Thus, 
Pk+1 = Pk + 2ΔY – 2ΔX = 3 + (2 x 4) – (2 x 5) = 1
 Xk+1 = Xk + 1 = 9 + 1 = 10 
Yk+1 = Yk + 1 = 18 + 1 = 19 
 Similarly, Step-03 is executed until the end point is reached or number of iterations equals to 4 times. (Number of iterations = ΔX – 1 = 5 – 1 = 4)





Ex3//Using Bresenham Algorithm calculate the points between the starting coordinates (20, 10) and ending coordinates (30, 18).

Solution: 
o Given: 
Starting coordinates: (X0, Y0) = (20, 10) 
Ending coordinates: (Xn, Yn) = (30, 18) 

STEP – 01: 
o Calculate ΔX, ΔY from the given input. 
ΔX = Xn – X0 = 30– 20 = 10
 ΔY =Yn – Y0 = 18– 10= 8 

STEP – 02: 
o Calculate the decision parameter Pk.
 Pk= 2 ΔY- ΔX = 2×8-10 = 6

STEP – 03:
 o As Pk >= 0, so case-02 is satisfied. Thus, 
Pk+1 = Pk + 2ΔY – 2ΔX = 6 + (2 x 8) – (2 x 10) = 2
 Xk+1 = Xk + 1 = 20 + 1 = 21
 Yk+1 = Yk + 1 = 10 + 1 = 11 
 Similarly, Step-03 is executed until the end point is reached or number of iterations equals to 9 times. (Number of iterations = ΔX – 1 = 10 – 1 = 9)





تعليقات



حجم الخط
+
16
-
تباعد السطور
+
2
-